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ABSTRACT: Characteristics of the European Centre for Medium-Range Weather Forecast’s (ECMWF’s) 0000 UTC

diagnosed 2-m temperatures (T2m) from 4D-Var and global ensemble forecasts initial conditions were examined in 2018

over the contiguous United States at 1/28 grid spacing. These were compared against independently generated, upscaled

high-resolution T2m analyses that were created with a somewhat novel data assimilation methodology, an extension of

classical optimal interpolation (OI) to surface data analysis. The analysis used a high-resolution, spatially detailed clima-

tological background andwas statistically unbiased. Differences of the ECMWF4D-VarT2m initial states from the upscaled

OI reference were decomposed into a systematic component and a residual component. The systematic component was

determined by applying a temporal smoothing to the time series of differences between the ECMWF T2m analyses and the

OI analyses. Systematic errors at 0000 UTC were commonly 1K or more and larger in the mountainous western United

States, with the ECMWF analyses cooler than the reference. The residual error is regarded as random in character and

should be statistically consistent with the spread of the ensemble of initial conditions after inclusion of OI analysis un-

certainty. This analysis uncertainty was large in the western United States, complicating interpretation. There were some

areas suggestive of an overspread initial ensemble, with others underspread. Assimilation of more observations in the

reference OI analysis would reduce analysis uncertainty, facilitating more conclusive determination of initial-condition

ensemble spread characteristics.
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1. Introduction

Ensembles of numerical weather forecasts are commonly

synthesized to provide users with state-dependent estimates of

the weather forecast uncertainty (Palmer 2006; Warner 2011;

Buizza 2018). These facilitate improved decisions relative

to making them based on deterministic forecast guidance

(Richardson 2000; Zhu et al. 2002). Great strides have been

made in generating more skillful and reliable ensemble pre-

dictions in recent years; for example, see Buizza (2019) and

Palmer (2019a). Still, sensible weather elements such as pre-

cipitation and 2-m temperature (T2m) over land are still very

challenging to simulate with skill and reliability in determin-

istic and ensemble forecasts (Sutton et al. 2006; Hamill and

Whitaker 2007; Lavaysse et al. 2013; Tennant and Beare 2014;

Gehne et al. 2019).

Suppose a developer has generated common diagnostics

such as rank histograms onT2m. These exhibit a U shape, which

are typically interpreted as indicating a lack of spread in the

ensemble. As discussed in Hamill (2001), there are other pos-

sible interpretations that include combinations of ensembles

with warm biases in some samples and cold biases in others.

The rank histogram alone does not provide enough informa-

tion to indicate which aspects of an ensemble prediction system

should be improved, and we consider other diagnostics to help

determine whether deficiencies were related to systematic er-

rors in the underlying deterministic predictions or deficiencies

in the ensemble construction.

Ideally, for an ensemble prediction system we desire the

individual members’ predictions to be unbiased, with no sys-

tematic differences from the truth. This is meant both in a

univariate sense, such as no bias in the verification of amember

against an unbiased point observation, and in a multivariate

sense, such as providing unbiased forecasts of the propagation

speed and amplitudes of low-frequency phenomena such as

the Madden–Julian oscillation (Zhang 2013 and references

therein). To approach this goal, prediction centers like ECMWF

use numerical weather prediction systems with advanced data

assimilation, numerical methods, physical parameterizations,

and land–atmosphere–ocean–sea ice couplings (e.g., Bonavita

et al. 2016; Juricke et al. 2018; Ahlgrimm et al. 2018; Beljaars

et al. 2018; Haiden et al. 2018a). Additionally, its ensemble

prediction system should also forecast the state-dependent un-

certainty as accurately as possible, with maximal sharpness

subject to calibration (Gneiting et al. 2007). For this, the initial

ensemble-state estimates should represent draws from the dis-

tribution of plausible analysis states (e.g., Houtekamer and

Mitchell 1998, 2001, 2005; Buehner et al. 2010a,b; Bonavita et al.

2011). The ensemble prediction system must also realistically

simulate the growth of random errors during the forecast due to
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chaos (Lorenz 1963; Molteni et al. 1996; Palmer 2006) and the

growth of forecast uncertainty due to model simplifications

(Buizza et al. 1999).

A challenge with developing model diagnostics to isolate

error sources is that modifications to address deterministic

systematic error can affect ensemble spread, and vice versa.

For example, the introduction of stochastic physics to address

the model uncertainty may also improve the prediction system’s

systematic errors (Weisheimer et al. 2014; Christensen et al.

2017; Palmer 2001, 2019b). Further, an improved forecast model

used in the ensemble will result in a better fit of the background

to the observations, reducing the spread of the estimated initial

conditions and the spread in the subsequent short- to medium-

range ensembles. Numerical weather prediction system devel-

opers thus need an expanded set of diagnostic tools that will

indicate which model development pathway will lead to rapid

progress.

Let us consider a specific scientific challenge, diagnosing the

sources of errors that are reflected in the ensemble initializa-

tion of T2m. Consideration of this variable is of practical in-

terest, for accurate T2m forecasts directly help users (what will

be tomorrow’s high temperature?) and indirectly help them,

for whether a thunderstorm develops often depends on T2m.

This variable is also commonly observed at surface weather

stations. Unfortunately, 2m above ground is commonly not a

model level (;10m is the lowest level in the ECMWF system),

and so T2m is instead an interpolated quantity. The fidelity of

the interpolation often depends on stability and surface char-

acteristics and their delicate interactions (ECMWF 2019a,

section 3b). Thus, the diagnostics of interpolated T2m provide

indirect evidence about the character of the directly forecast

model variables such as surface skin temperatures or the at-

mospheric model’s first vertical level above ground.

Suppose then that we have found U-shaped rank histograms

(Hamill 2001) of the initialized ensemble of T2m. Were a high-

quality, unbiased reference analysis of T2m available with er-

rors independent from those of the prediction system, it could

potentially be compared against the ensemble’s initial T2m

state estimates. Figure 1 illustrates how a reference T2m anal-

ysis and error decomposition could help inform the categori-

zation of errors and the model development process. If the

differences between the operational initial states and the ref-

erence analysis were nonzero and consistent over time (sys-

tematic), changes to the underlying model may be warranted;

the analysis bias was probably originating in part from biases in

the underlying background state used in the data assimilation.

Assuming that the remaining errors, the residual, were random

in character and could be quantified, as many have proposed,

the time-averaged spread of initial ensemble of analyses should

be consistent with the time-averaged spread of the residual

error after an incorporation of the effects of analysis un-

certainty (Hamill 2001, Fig. 6., Saetra et al. 2004; Candille

and Talagrand 2008; Weijs and van de Giesen 2011;

Yamaguchi et al. 2016; Ben Bouallègue et al. 2020). If the

time-averaged spread in the initial ensemble with analysis

uncertainty was smaller than this residual component, then

methodological changes to the ensemble initialization or

stochastic physics procedures may be necessary to increase

spread. The decomposition of error leveraging an independent

analysis thus assists in determining which aspect of the pre-

diction system should be improved, the underlying model or

the ensemble methods. Performing the analysis with gridded

data and not just observations permits an examination of

spatial patterns of the errors. While only applied to initial

conditions in this study and not to forecasts, the procedure is

general and could be so applied.

This error decomposition was applied to T2m initialization

in the ECMWF system in 2018 in this study. ECMWF has

a somewhat complicated initialization procedure. ECMWF

produces a T2m analysis using optimal interpolation (ECMWF

2019b, chapter 9) and surface observations. However, this is

not used directly in the atmospheric model initialization, but

only indirectly to make increments to the soil moisture state.

ECMWF’s 2018 initial ensemble-state estimates of T2m were

not directly analyzed but were a vertically interpolated output

of the atmospheric 4D-Var procedure. The 4D-Var procedure

assimilated a wide variety of observations, but not surface T2m.

An independently produced T2m analysis from surface obser-

vations not leveraging ECMWF background forecasts is thus

proposed as a useful and independent dataset for evaluation of

the ECMWF T2m state ensemble estimates, with the ac-

knowledged complication that T2m is an interpolated quantity.

While we illustrate a particular error decomposition that lever-

ages the independently generated T2m analyses, we note that there

is a rich literature of error decompositions and diagnostics related

toweather prediction.Recent examples includeLeutbecher (2010),

Christensen (2015), Magnusson (2017), Rodwell et al. (2018), and

many more as discussed in Wilks (2011, chapter 8). Still, the rela-

tively simple approach here assuming a commonplace variance

decomposition and Gaussianity will be demonstrated to provide

some valuable insights into the characteristics of initialization of the

ECMWF ensemble.

To apply the chosen diagnostic technique, we require high-

quality, unbiased reference analyses ofT2m.Hamill and Scheuerer

FIG. 1. The proposed diagnostic procedure for characterizing

2-m temperature analysis errors andwhat prediction-system changes

may be necessary.
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(2020) described an optimal interpolation (OI; Gandin 1965;

Daley 1991) procedure for creating a very high-resolution,

accurate, unbiased, gridded statistical 1-h forecast of surface

temperature over the contiguous United States (CONUS).

With slight modification, this procedure was adapted to pro-

vide accurate analyses of 2-m temperature and its uncertainty,

leveraging the OI procedure and a high-resolution, spatially

detailed climatological background. A time series of these T2m

analyses and their uncertainty will be used in the diagnosis of

ECMWF control T2m initial-state estimate and the ensemble

initialization of T2m. Our hypothesis is that the diagnostic

procedure will demonstrate issues both related to systematic

error in the underlying prediction system and problems with

adequate spread in the ensemble initialization.

Section 2 will provide details on the observation, climatol-

ogy, and forecast data used in the study. The procedure used to

generate the reference OI analyses is briefly described, with

more complete detail in the online supplemental material

(https://doi.org/10.1175/MWR-D-20-0119.s1). Section 2 will also

describe the diagnostic procedure used to partition the initial

ensemble errors into systematic and random components.

Section 3 provides results, and section 4 discusses these and

concludes. An appendix describes the procedure for estimating

statistical significance of the analysis bias.

2. Data and methods

a. Control initial state and ECMWF ensemble initial
conditions

ECMWF T2m initial-condition data were downloaded from

ECMWF’s THORPEX Interactive Grand Global Ensemble

(TIGGE; Bougeault et al. 2010; Swinbank et al. 2016) data

portal on a 1/28 grid surrounding the contiguous United States

(CONUS). A control state and 50-member ensemble initial

conditions centered around the control were downloaded

for every day in 2018. The ensemble initial conditions were

created with perturbations generated from an ensemble of

data assimilations (EDA; Bonavita et al. 2011) using a lower-

resolution, perturbed-observation version of 4D-Var com-

bined with singular-vector perturbations (Molteni et al. 1996).

The EDA conducts parallel 4D-Var cycles, using different

background forecasts for every member and perturbing the

observations with independent random noise for each ensem-

ble member. The added observation perturbations are random

draws consistent with the observation-error covariance matrix.

The ECMWFprediction system changed during the year; prior

to 5 June 2018, cycle 43r3 of the prediction system was used. At

and after that date, cycle 45r1 was used. Documentation on the

ECMWF prediction system versions can be found at https://

www.ecmwf.int/en/publications/ifs-documentation. We did not

examine the characteristics of theT2m analysis time series to see if

there were any discontinuities resulting from the change in model

versions.

b. Data and procedure used to generate reference OI

analyses

The observation dataset used in the generation of the OI

analyses of T2m was the National Center for Atmospheric

Research (NCAR) dataset 472.0, an archive of quality-controlled

hourly surface observations over North America. Data were

originally synthesized and quality controlled at the U.S.

National Weather Service Meteorological Development

Laboratory. These data are available at https://rda.ucar.edu/

datasets/ds472.0/. Surface temperatures were used at 0000 UTC

for every day in 2018. The authors chose to further limit use of

surface temperatures in this dataset to only those observation

sites where datawas available at 97%ormore of the hours, days,

and years in the analysis period. With this availability criterion,

1118 station locations were available in the area of study,

the CONUS.

FIG. 2. (a) Upscaled 1/28 T2m OI analysis for 0000 UTC 1 Jul

2018. (b) Corresponding ECMWF control analysis of T2m pro-

duced by the 4D-Var. (c) ECMWF–OI analysis.
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The procedure used to generate the high-resolution refer-

ence OI analyses of T2m and used to estimate their uncertainty

is described in the online supplemental material, along with

an example (https://doi.org/10.1175/MWR-D-20-0119.s1).

The procedure was inspired by and partially described in

Hamill and Scheuerer (2020). The climatologies that pro-

vide the data assimilation background forecasts were de-

rived from the Parameter-elevation Relationships on

Independent Slopes Model (PRISM; Daly et al. 2008 and refer-

ences therein). Observations were then used to produce a gridded

set of analysis increments, the analyzed deviations from clima-

tology. These were then added back to the 0000UTC climatology

to generate 0000 UTC analyzed fields, one for each day in 2018.

The procedure for development of the 1/28 analysis uncertainty
estimates are also described in the online supplemental material

(https://doi.org/10.1175/MWR-D-20-0119.s1). This procedure is

somewhat more complex, involving a determination of the high-

resolution grid analysis-error covariances and an estimation of

how much these are reduced in the upscaling to the 1/28 grid.
Comparison against ECMWF ensemble initial states in this

study requiredupscaling of the high-resolutionOI analyses to 1/28,
the grid spacing ofECMWFdata in theTIGGEarchive. Figure 2a

shows an example of the ‘‘budget’’ upscaling (Accadia et al. 2003)

of a sample OI analysis to the 1/28 grid of the ECMWF data.

Figure 2b presents the control ECMWF initial state at the same

time masked to the CONUS, and Fig. 2c shows the difference

between the two. The ECMWF analysis for this date was colder

over more grid points than it was warmer. Whether these differ-

ences were systematic will be evaluated through the use of an

error decomposition applied at each grid point.

c. The proposed error decomposition and diagnostics

LetT true
t represent the unknown discretized true state ofT2m

at a grid point in question at date t on the 1/28 grid. Similarly, let

T4D
t represent the ECMWF control 4D-Var atmospheric ana-

lyzed state estimate of T2m, and let TOI
t represent the upscaled

reference OI analyzed state, the reference estimate of the

truth. We define TOI
t as

TOI
t 5T true

t 1 �
t
; �

t
;N(0,s2

a) . (1)

That is, the OI estimate was the true state plus an error, as-

sumed to have zero mean and analysis-error variance s2
a

Justification for the unbiased character of the OI analysis can

be found in Hamill and Scheuerer (2020). The difference of the

4D-Var analysis from the OI was then

d
t
5T4D

t 2TOI
t 5T4D

t 2T true
t 2 �

t
. (2)

The assumption was that if the errors were consistent from day

to day, they represented an error that was systematic. We thus

assumed dt can be decomposed into a systematic component dt
that was slowly varying and a residual d0t that comprised the

remaining error:

d
t
5 d

t
1 d0t . (3)

The systematic component for a particular date was then esti-

mated with a temporal kernel smoother (Hastie and Tibshirani

1990, section 2.6; Rasmussen and Williams 2006). A Gaussian

kernel was chosen that has a kernel radius b of 10 days:

K
s
(d

t*, dt)5 exp

"
2
(d

t*, dt)
2

2b2

#
. (4)

We then estimate dt as

d
t
5

�
365

t*51

K
s
(d

t*, dt)dt*

�
365

t*51

K
s
(d

t*, dt)

. (5)

The b in Eq. (4) was chosen through a cross-validation ap-

proach. For each day, temperatures for the days t2 1, t, and t1
1 were withheld, and a variety of possible b were evaluated.

The cross-validated fit to the withheld data at time t were then

evaluated for each choice of b. Setting b5 10 days provided an

approximate best fit (lowest root-mean-square error) when

averaged over all grid points across the CONUS and all days

during 2018, though 20 and 30 days kernel radius (and longer)

FIG. 3. (a) ECMWF 4D-Var and OI analysis time series in 2018

for a point along theNebraska–Kansas border in the centralUnited

States. Blue lines connect the OI analyses and highlight the syn-

optic variability. (b) 4D-Var minus OI differences. Solid red line

indicates the systematic error estimate. Gray shading emphasizes

its magnitude. (c) As in (b), but gray lines now emphasize the re-

sidual, or random error.
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were nearly equally as accurate. The surrounding days were

withheld given the nonzero autocorrelation of presumed

analysis error; this was a consequence of cycled data assimi-

lation, where an error in the background was somewhat re-

flected in the 4D-Var analysis and then in the subsequent

background forecast.

Let us now consider the variance decomposition of the

4D-Var minus OI time series:

Var(d
t
)5Var(d

t
1 d0t)5Var(d

t
)1Var(d0t)1 2cov(d

t
d0t) . (6)

For a given grid point, the left-hand side can be computed

directly from the time series of differences in Eq. (2). The

first term on the right-hand side dt was the variance associated

with the time-dependent estimate of the systematic error from

the kernel smoother. The second term was the variance asso-

ciated with the residual error d0t, and the third term was the

covariance between the two. Ideally, these first and third terms

would be near zero. When they are large, it may be instructive

to examine the associated bias estimate and use this as a

gateway to further investigations of their source(s).

An illustrative sample of the underlying data used to gen-

erate the terms in Eq. (6) are presented for a grid point in the

central United States along the Nebraska–Kansas state bor-

der in Fig. 3. Time series of both the 4D-Var (red dots) and

the OI (blue dots and lines) are shown in Fig. 3a. The solid

blue lines in this panel illustrate the day-to-day weather

variability. In Fig. 3b, the red dots illustrate the 4D-Var minus

OI analysis differences, removing the common day-to-day

weather-related variability. The thick red line in this panel

provides the time-varying estimate of dt, which is below zero

(i.e., a 4D-Var cold bias) to a greater extent in the winter and

spring. The bias that presumably could be reduced through

changes to the prediction system is highlighted with the gray

shading. The individual black lines in Fig. 3c show the 4D-Var

minus OI analysis differences from the time-varying mean

error, the estimate of the residual (random) component.

Variances associated with this term, it is asserted, should be

consistent with the sum of ensemble initial-condition vari-

ance and the OI analysis-error variance, presumed to be in-

dependent, as no T2m observations were assimilated during

the 4D-Var assimilation procedure. In the results section,

plots will be presented of the variance components averaged

over 3-month periods. An overline (�) is used to express time-

averaged variance statistics, and hatted functionŝ indicate sample

statistics. For ease of interpretation, spreads (standard devia-

tions) will be plotted instead of variances, i.e., Vâr (�)
h i1/2

.

A primary question of importance to the ensemble prediction

system developer is whether the initial spread in the ensemble is

of an appropriate magnitude. The ith member of a 50-member

T2m ensemble initial condition at time t and at a grid point will

be referred to as T i
t (ens) The sample variance of that en-

semble over all members will be referred to as Vâr[Tt(ens)]

We propose that the time average of spreads in an en-

semble after adding a term that incorporates analysis un-

certainty should be matched in magnitude by the time

average of the residual component of the analysis error:

Vâr[Tt(ens)]þVârOI
t

� �1/2 � Vâr(�0t)
h i1/2

This consistency

can be readily checked presuming we have an estimate of the

analysis-error variance. The procedure for estimating this

was rather involved and again is discussed in the online

supplemental material (https://doi.org/10.1175/MWR-D-20-

0119.s1).

FIG. 4. Estimate of the magnitude of T2m systematic error for (a) January–March, (b) April–June, (c) July–

September, and (d) October–December 2018.
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Our error decomposition bears similarity to others in

the literature such as Rodwell et al. (2018; R18). But there

are differences. In this study, analysis uncertainty replaces

the observation uncertainty of R18, and the residuals of

R18 are implicitly estimated through the comparison of

spread ratios.

3. Results

First we consider themagnitude of systematic error and bias.

Figure 4 shows gridded estimates of systematic-error spread

Vâr(dt)
h i1/2

for each season. The most notable feature of Fig. 4

is that the systematic-error estimates were larger in the

western United States and were somewhat larger in the

winter and spring than they were in the fall and summer.

These were manifested in temperatures that were cooler

on average in the 4D-Var system than they were in the

OI (Fig. 5). The differences were significant for a large

number of grid points.

Perhaps numerical issues with the vertical interpolation

to the 2-m level were partially responsible for the system-

atic cold bias of 2-m temperatures, not accounting for

the variety of possible behaviors in different atmospheric

conditions. Another possible source was that differences in

grid elevation may increase the systematic analysis-error

variance in the western United States. This possibility is

examined in Fig. 6, which compared terrain elevations of

the 4-km OI computational grid upscaled to the ECMWF

grid, and their differences. While there were small-scale

differences when the ECMWF data were interpolated to

the OI analysis grid spacing, when the OI analysis terrain

were budget upscaled to the 1/28 spacing at which the

ECMWF data was saved in the TIGGE database, the dif-

ferences were small and apparently random in character;

there did not appear to be any systematic elevation differ-

ence. The larger systematic differences in the cool-season

that were especially prominent in mountainous regions

suggests another possible hypothesis: perhaps the fractional

snow cover or snow depth were misestimated, causing sys-

tematic biases in the background T2m used in the 4D-Var

system. These were not evaluated here but may be a subject of

further research at ECMWF.

Now consider whether the initial-condition spread of T2m

was accurately estimated. Figure 7 presents the time-averaged,

random (residual) spread Vâr(dt)
h i1/2

, which should be matched

by the initial-condition spread after accounting for OI analysis

uncertainty, Vâr[Tt(ens)]1VârOI
t

n o1/2

The time average of

the residual spread was generally larger in themountains of the

western United States than in the eastern United States,

though the region with largest residual spread shifts with sea-

son from the northern Rockies in the fall and winter to the

eastern Rockies and western Great Plains in the spring and the

southern Rockies in the summer.

The construction of Vâr[Tt(ens)]1VârOI
t

n o1/2

is now consid-

ered. Figure 8 shows the time average of ensemble initial-condition

spreads for each season, Vâr[Tt(ens)]
n o1/2

The spreads by

themselves were much lower in magnitude than the time

average of the residual spread in the previous figure.

FIG. 5. Time-mean 4D-Var bias by seasonwith respect to the upscaledOI analysis. (a) January–March, (b)April–

June, (c) July–September, and (d) October–December 2018. Points where the departure from 0 is determined to be

statistically significant using the procedure described in the appendix are dotted.
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The ensemble spreads were generally larger in the mountain-

ous western United States, but were larger in the summer

than in the winter. The estimates of the OI analysis un-

certainty, VârOI
t

h i
1/2 are shown in Fig. O12 of the online

appendix (https://doi.org/10.1175/MWR-D-20-0119.s1). These

exhibit uncertainty maxima in the northern and central

Rockies and in the Cascade range of Washington state

and Oregon. The larger uncertainty there was consistent

with the sparser observation network in these areas and

the more limited spreading of observation data due to the

background-error covariance model, which limits spreading

of data influence from valley locations to high terrain.

The sum of the two terms are provided in Fig. 9; it is

this that should be consistent in magnitude with the re-

sidual spread of Fig. 7. The sum in Fig. 9 again exhibited

maxima in the mountainous western United States, with a

consistent peak in the Yellowstone area of northwest

Wyoming. Generally, the areas with larger analysis un-

certainty follow station density (Fig. 2b) and complexity

of terrain elevation. Unfortunately, the large analysis un-

certainty in the western United States made determination

of whether the ensemble was under versus overspread

FIG. 6. (a) PRISM terrain elevation. (b) ECMWF terrain elevation. (c) Elevation difference. (d) Elevation

difference upscaled to 1/28 grid.
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challenging, for initial ensemble spread in this area was

much lower than the analysis uncertainty. That is, the sum

of the two mostly reflected the contributions of the analysis

uncertainty.

To facilitate interpretation where analysis uncertainty was

lower, the ratios of the data in Fig. 9 (numerator) versus Fig. 7

(denominator) are plotted in Fig. 10. This helps interpret

where the initial ensemble may have been under or overspread

FIG. 7. Estimate of time-averaged random (residual) spread: (a) January–March, (b) April–June, (c) July–

September, and (d) October–December 2018.

FIG. 8. Estimate of T2m time-averaged ensemble initial spread: (a) January–March, (b) April–June, (c) July–

September, and (d) October–December 2018.
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(blue versus red color). In the central and eastern United

States, the initial spread estimate appeared more reasonable in

magnitude with ratios near 1.0, though the diagnostic sug-

gested underspread ensembles in April–June and overspread

in October–December. Again, interpretation in the western

United States was complicated by the large analysis uncer-

tainty. The small signal (ensemble initial spread) was over-

whelmed by the larger noise (analysis uncertainty). This could

be ameliorated through assimilation of a denser network of

observations. This analysis procedure used O(103) observa-

tions; the PRISM procedure used O(104). Suppose the OI

analysis-error variances were uniformly decreased everywhere

by a factor of 3 through assimilation of a more dense network

of T2m observations, changing the sum in Fig. 9.1 Since these

T2m observations were not assimilated in the 2018 version of

ECMWF’s 4D-Var with its significant bias, the denominator

was assumed to remain relatively unchanged. The revised ratio

is plotted in Fig. 11, which shows that the ensemble with the

assimilation of more dense observations was diagnosed as be-

ing underspread in most regions. It should be noted that this

diagnostic does not account for the possibility of smaller

residual errors in Fig. 7 resulting from amore accurate analysis.

Hence the assertion that the ECMWF T2m ensemble might be

underspread would need to be checked through the actual OI

assimilation of a denser network of observations; this was not

performed here.

Were this diagnostic applied to longer-lead forecasts rather

than initial conditions, then the ensemble spread would be

larger, providing proportionately more signal to the noise

(analysis uncertainty). Hence, the existingT2m analysesmay be

better suited to diagnosis of medium-range forecast errors than

initial-condition errors.

4. Discussion and conclusions

The purpose of this article was to demonstrate application

of a simple error decomposition to initial conditions for en-

semble weather–climate prediction, enabling some quantifi-

cation of how much of the errors were systematic and how

much were random. The decomposition was applied to the

(interpolated) 2-m temperature (T2m) initialization of the

ECMWF ensemble in 2018, leveraging an independently gen-

erated optimal interpolation (OI) procedure of T2m to provide

the verification analyses and the estimates of analysis uncertainty.

Given that the OI procedure draws closely to the observations,

a direct comparison against the observations at these sites

would produce similar results. The error decomposition

showed that there were statistically significant systematic er-

rors in T2m initialization across the CONUS. Interpretation of

FIG. 9. Estimate of T2m time-averaged ensemble initial spread (Fig. 8) plus OI analysis uncertainty (online

appendix in the supplemental material, Fig. O12; https://doi.org/10.1175/MWR-D-20-0119.s1), calculated as the

square root of the sum of the squares: (a) January–March, (b) April–June, (c) July–September, and (d) October–

December 2018.

1 The uniform factor-of-3 reduction is a simplification of what

may happen in practice, where analysis-error variances will com-

monly decrease by a greater amount through the introduction of

new observations in data-sparse regions compared to data-rich

regions. See Morss et al. (2001, their Fig. 4).
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initial-condition spread character was less definite, in that

the substantial OI analysis uncertainty made interpretation

of the initial spread characteristic ambiguous. Overall, the

initial hypothesis of biased initial ensemble T2m states was

confirmed, but the hypothesized underspread characteristic

could not be successfully determined using the OI analyses

and their comparatively large analysis uncertainty. In fu-

ture work, this diagnosis could be improved by assimilating

more observations to reduce that uncertainty, and the di-

agnostic could still be applied to medium-range ensemble

forecasts, where forecast spread is larger than the analysis

uncertainty.

The systematic errors for 0000 UTC showed up as a cold

bias, one that was larger in the western and central United

States during winter and spring. The systematic errors may

necessitate changes to the underlying deterministic prediction

system, and a deficiency in the initial spread may necessitate

changes to the method of construction of the initial ensemble.

A necessary next step is further exploratory data analysis

combined with the insight of prediction system developers to

identify the key underlying deficiencies. This is a challenging

endeavor, for ‘‘there is hardly any component of the atmo-

spheric and land-surface modeling system that does not have

an influence on T2m errors’’ (M. Bonavita 2020, ECMWF,

personal communication). A subsequent exploratory data

analysis to determine the ultimate sources of these errors was

not possible in this article. Still, we suggest some possible di-

rections, many of which are already being actively explored at

ECMWF. A comparatively simple explanation may be the

procedure for vertical interpolation to the T2m level. For the

137-level version of the data assimilation system used during

2018 (https://www.ecmwf.int/en/forecasts/documentation-and-

support/137-model-levels), again the lowest model level was at

approximately 10m above ground. The temperature analysis at

the 2-m level is computed as an interpolation between the

ground surface temperature and this lowest model level. Lapse

rates between these two levels can vary greatly in space and

time, with superadiabatic lapse rates in calm, clear daytime

conditions to extreme inversions at night. The ECMWF pro-

cedure for interpolation to the 2-m level is discussed in

ECMWF (2019a, section 3.10.3) and could be examined as a

candidate for improvement.

Beyond possible issues with vertical interpolation between

model levels, the land T2m is strongly sensitive to the land

surface energy partitioning. Incoming fluxes of net down-

ward longwave and shortwave energy are balanced by surface

sensible and latent heat fluxes and a ground heat flux.

Improvement of initialization andmodeling of the land surface

energy balance is an active area of research at ECMWF (e.g.,

Haiden and Trentmann 2016; Hogan et al. 2017; Orth et al.

2017; Haiden et al. 2018b,c; Fairbairn et al. 2019; Munoz-

Sabater et al. 2019). There are many opportunities for model

systematic errors to deleteriously affect the surface energy

balance and consequently the estimation of T2m. These may

include a misestimation of downward shortwave radiative

fluxes through misestimation of cloud fraction and optical

FIG. 10. Time-averaged ensemble initial spread plusOI analysis uncertainty (Fig. 9), (see online appendix; https://

doi.org/10.1175/MWR-D-20-0119.s1) divided by the time-averaged random (residual) spread (Fig. 7). This pro-

vides an estimate of whether the initial ensemble is underspread (ratio , 1.0) or overspread (ratio . 1.0):

(a) January–March, (b) April–June, (c) July–September, and (d) October–December 2018.
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depth, which in turn can be strongly sensitive to the methods

used to parameterize deep and shallow convection and cloud

microphysics. Misestimation of boundary and surface-layer

mixing also affects the surface sensible and latent heat fluxes.

In the daytime, unduly calm winds and drier soils will result in

larger ground heat storage and warmer T2m. There are also

many challenges associated with correctly modeling evapora-

tive fluxes from the soil and canopy, including misspecification

of model and physiographic parameters such as those related

to soil hydraulic conductivity, stomatal resistance, leaf area

index, the parameterization of fractionally snow-covered soil,

albedo, roughness lengths, urban fraction, vegetative fraction,

and more.

Systematic forecast errors of T2m may in turn be related to

errors in the land surface initial state, including its soil moisture

and temperature and snow cover. If initial snow depth and

fractional snow cover are overestimated, it is likely that the

forecast temperatures used as background for the next data

assimilation cycle will be biased too low and remain low in the

absence of adjustment to new observations. As temperatures

had a cold bias in the mountainous western United States

during winter and spring, the accuracy of initial snow estimates

(ECMWF 2019b, section 9.3) could be investigated further.

The diagnostics also indicated that even with the large OI

analysis uncertainty, sometimes the initial T2m ensemble spread

was somewhat too small. Changes that may result in greater

spread in the ECMWF system might include: (i) inducing a

greater variety in background soil temperatures and soil mois-

tures, perhaps through application of stochastic physics in

the soil state. These affect the surface-energy balance among

ensembles and thus T2m variety. (ii) Increasing the variety of

snow amount and fractional snow cover in initial state, be it

through stochastic physics that create a greater variety of en-

semble precipitation and surface-temperature forcings, or

perturbations to their initial state. (iii) Applying techniques

that introduce a greater variety of downward solar radiation to

the surface; perhaps parameters in the SPPT stochastic physics

(Leutbecher et al. 2017) can be changed, or more physically

based stochastic parameterizations of deep convection and/or

microphysics developed. These drive variety in energy parti-

tions at the surface. (iv) Update themethodology of perturbing

the observations in the ensembles of data assimilations pro-

cedure. If correlations of errors are not correctly specified in

the observation-error covariance matrix R used in the 4D-Var

(possibly observation errors are assumed to be more inde-

pendent than they are), this will result in an ensemble with

lower posterior spread.

In this application, the diagnostics leveraged surface-

temperature analyses that were generated independently

through a procedure with low bias but with higher-than-

desirable analysis uncertainty in the western United States.

Assimilation of more observations would reduce the anal-

ysis uncertainty, making this OI procedure possibly more

relevant for diagnosing initial-condition uncertainty character-

istics. The procedure is general, though, and its limitations would

be less severe when applied to, say, medium-range forecasts

where the forecast spread is larger and the OI analysis uncer-

tainty is comparatively smaller.

Could the OI analysis be replaced with one generated in-

ternally at ECMWF? It is possible that another validation

FIG. 11. As in Fig. 10, but assuming the analysis-error variance has been decreased by a factor of 3 through the

assimilation of more observations while residual spread (Fig. 7) remains unchanged.
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dataset such as the T2m analysis produced as part of the global

ERA5 dataset (Hersbach et al. 2019) could be used. However,

this and other similar products leverage a background forecast

created by a numerical model, one which may have biases that

are nontrivial and related to the biases in the operational

model initialization. Further research is needed to determine

the suitability of internally generated ECMWF reanalyses as

the reference for the error decomposition.
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APPENDIX

Statistical Significance Testing of Bias

The procedure for the statistical significance testing of

gridded bias estimates follows best practices for multiple si-

multaneous statistical hypothesis tests, following Wilks (2016)

and references therein. The procedure began with the de-

termination of p values associated with a one-sample two-

sided t test of bias. Because of the autocorrelation of bias

estimates, an effective sample size was estimated at each grid

point using the lag-1 autocorrelation estimate r determined

with a Pearson product-moment correlation. Then, following

Wilks (2011, Eq. 5.12) the effective sample size was com-

puted as

n0 ’ 12 r

11 r
. (A1)

This effective sample size was used in the computation of the

variance estimate, the denominator of the t statistic:

t5
x2m

0bVar(x)
h i1/2 , (A2)

where m0 was the null hypothesis value (here, zero), and x was

the sample mean of the time series of dt, 4D-Var minus OI

differences. The estimated variance of the sample meanbVar(x)

was computed using the effective sample size:

bVar(x)5
s2

n0 , (A3)

where s was the sample variance of the time series of 4D-Var

minus OI differences.

The procedure then directly follows Wilks (2016) for com-

putation of statistically significant grid points when controlling

the false discovery rate at 10%.
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